Gill Na+-K+-ATPase activity correlates with basolateral membrane lipid composition in seawater- but not freshwater-acclimated Arctic char (Salvelinus alpinus).

نویسندگان

  • J S Bystriansky
  • J S Ballantyne
چکیده

The successful migration of euryhaline teleost fish from freshwater to seawater requires the upregulation of gill Na+-K+-ATPase, an ion transport enzyme located in the basolateral membrane (BLM) of gill chloride cells. Following 39 days of seawater exposure, Arctic char had similar plasma sodium and chloride levels as individuals maintained in freshwater, indicating they had successfully acclimated to seawater. This acclimation was associated with an eightfold increase in gill Na+-K+-ATPase activity but only a threefold increase in gill Na+-K+-ATPase protein number, suggesting that other mechanisms may also modulate gill Na+-K+-ATPase activity. We therefore investigated the influence of membrane composition on Na+-K+-ATPase activity by examining the phospholipid, fatty acid, and cholesterol composition of the gill BLM from freshwater- and seawater-acclimated Arctic char. Mean gill BLM cholesterol content was significantly lower ( approximately 22%) in seawater-acclimated char. Gill Na+-K+-ATPase activity in individual seawater Arctic char was negatively correlated with BLM cholesterol content and positively correlated with %phosphatidylethanolamine and overall %18:2n6 (linoleic acid) content of the BLM, suggesting gill Na+-K+-ATPase activity of seawater-acclimated char may be modulated by the lipid composition of the BLM and may be especially sensitive to those parameters known to influence membrane fluidity. Na+-K+-ATPase activity of individual freshwater Arctic char was not correlated to any membrane lipid parameter measured, suggesting that different lipid-protein interactions may exist for char living in each environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid restructuring does not contribute to elevated activities of Na(+)/K(+)-ATPase in basolateral membranes from the gill of seawater-acclimated eel (Anguilla rostrata)

In teleost fishes, increases in gill Na(+)/K(+)-ATPase activity accompanying the transition from fresh water to sea water may be attributed to changes in either the numbers of enzyme molecules present or to turnover number (k(cat)). The sensitivity of Na(+)/K(+)-ATPase to its chemical/physical environment in the membrane makes it plausible that modulation of enzyme activity may be driven, in pa...

متن کامل

Intermediary metabolism of Arctic char Salvelinus alpinus during short-term salinity exposure.

The migration of Arctic char Salvelinus alpinus from freshwater to seawater requires a substantial reorganization of the osmoregulatory tissues to regulate plasma ion levels. These modifications have an inherent metabolic cost, which must be met through the upregulation of intermediary metabolism. Arctic char intermediary metabolism was monitored during the initial 96 h of seawater acclimation ...

متن کامل

Variation in salinity tolerance, gill Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and mitochondria-rich cell distribution in three salmonids Salvelinus namaycush, Salvelinus fontinalis and Salmo salar.

We compared seawater tolerance, gill Na(+)/K(+)-ATPase and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) abundance, and mitochondria-rich cell (MRC) morphology of three salmonids, lake trout Salvelinus namaycush, brook trout Salvelinus fontinalis and Atlantic salmon Salmo salar. They were transferred directly from 0 p.p.t. (parts per thousand; freshwater) to 30 p.p.t. seawater, or transferred graduall...

متن کامل

Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar).

Few studies have examined changes in salmon gill ion transporter expression during the transition from seawater to freshwater, a pivotal moment in the salmonid life cycle. Seawater-acclimated Atlantic salmon were transferred to freshwater and blood and gill tissue were sampled over 30 days of acclimation. Salmon held in seawater had stable plasma osmolality and sodium and chloride levels throug...

متن کامل

Immunochemical analysis of the vacuolar proton-ATPase B-subunit in the gills of a euryhaline stingray (Dasyatis sabina): effects of salinity and relation to Na(+)/K(+)-ATPase.

In the gills of freshwater teleost fishes, vacuolar proton-ATPase (V-H(+)-ATPase) is found on the apical membrane of pavement and chloride (Na(+)/K(+)-ATPase-rich) cells, and is an important transporter for energizing Na(+) uptake and H(+) excretion. In the gills of elasmobranch fishes, the V-H(+)-ATPase has not been extensively studied and its expression in freshwater individuals has not been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 292 2  شماره 

صفحات  -

تاریخ انتشار 2007